Semiparametric Bayesian inference in smooth coefficient models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Semiparametric Inference in Multiple Equation Models

This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...

متن کامل

Semiparametric Bayesian Inference in Multiple Equation Models

This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...

متن کامل

Bayesian Inference for Gaussian Semiparametric Multilevel Models

Bayesian inference for complex hierarchical models with smoothing splines is typically intractable, requiring approximate inference methods for use in practice. Markov Chain Monte Carlo (MCMC) is the standard method for generating samples from the posterior distribution. However, for large or complex models, MCMC can be computationally intensive, or even infeasible. Mean Field Variational Bayes...

متن کامل

Semiparametric Bayesian inference for regression models

This paper presents a method for Bayesian inference for the regression parameters in a linear model with independent and identically distributed errors that does not require the specification of a parametric family of densities for the error distribution. This method first selects a nonparametric kernel density estimate of the error distribution which is unimodal and based on the least-squares ...

متن کامل

Semiparametric Bayesian Inference for Stochastic Frontier Models

In this paper we propose a semiparametric Bayesian framework for the analysis of stochastic frontiers and efficiency measurement. The distribution of inefficiencies is modelled nonparametrically through a Dirichlet process prior. We suggest prior distributions and implement a Bayesian analysis through an efficient Markov chain Monte Carlo sampler, which allows us to deal with practically releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2006

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2005.06.027